The SsDREB Transcription Factor from the Succulent Halophyte Suaeda salsa Enhances Abiotic Stress Tolerance in Transgenic Tobacco
نویسندگان
چکیده
Dehydration-responsive element-binding (DREB) transcription factor (TF) plays a key role for abiotic stress tolerance in plants. In this study, a novel cDNA encoding DREB transcription factor, designated SsDREB, was isolated from succulent halophyte Suaeda salsa. This protein was classified in the A-6 group of DREB subfamily based on multiple sequence alignments and phylogenetic characterization. Yeast one-hybrid assays showed that SsDREB protein specifically binds to the DRE sequence and could activate the expression of reporter genes in yeast, suggesting that the SsDREB protein was a CBF/DREB transcription factor. Real-time RT-PCR showed that SsDREB was significantly induced under salinity and drought stress. Overexpression of SsDREB cDNA in transgenic tobacco plants exhibited an improved salt and drought stress tolerance in comparison to the nontransformed controls. The transgenic plants revealed better growth, higher chlorophyll content, and net photosynthesis rate, as well as higher level of proline and soluble sugars. The semiquantitative PCR of transgenics showed higher expression of stress-responsive genes. These data suggest that the SsDREB transcription factor is involved in the regulation of salt stress tolerance in tobacco by the activation of different downstream gene expression.
منابع مشابه
SsTypA1, a chloroplast-specific TypA/BipA-type GTPase from the halophytic plant Suaeda salsa, plays a role in oxidative stress tolerance.
Suaeda salsa is a leaf-succulent euhalophytic plant capable of surviving under seawater salinity. Here, we report the isolation and functional analysis of a novel Suaeda gene (designated as SsTypA1) encoding a member of the TypA/BipA GTPase gene family. The steady-state transcript level of SsTypA1 in S. salsa was up-regulated in response to various external stressors. Expression of SsTypA1 was ...
متن کاملMolecular characterization of an MYB transcription factor from a succulent halophyte involved in stress tolerance
Abiotic stresses like drought, salinity and extreme temperature significantly affect crop productivity. Plants respond at molecular, cellular and physiological levels for management of stress tolerance. Functional and regulatory genes play a major role in controlling these abiotic stresses through an intricate network of transcriptional machinery. Transcription factors are potential tools for m...
متن کاملOverexpression of a Plasma Membrane-Localized SbSRP-Like Protein Enhances Salinity and Osmotic Stress Tolerance in Transgenic Tobacco
An obligate halophyte, Salicornia brachiata grows in salt marshes and is considered to be a potential resource of salt- and drought-responsive genes. It is important to develop an understanding of the mechanisms behind enhanced salt tolerance. To increase this understanding, a novel SbSRP gene was cloned, characterized, over-expressed, and functionally validated in the model plant Nicotiana tab...
متن کاملExpression pattern analysis of transcription factors from Aeluropus littoralis in response to salt stress and recovery condition.
Salinity is one of the most important abiotic stresses that decrease crop production. Transcription factors (TFs) are prominent regulators in plant responses to abiotic stress. In the present study, the expression pattern of four salt-induced genes encoding transcription factors, namely, MYB, RF2, GTF, and ARID was studied in response to salt stress (sodium chloride) and recovery conditions. Th...
متن کاملExpression of a Finger Millet Transcription Factor, EcNAC1, in Tobacco Confers Abiotic Stress-Tolerance
NAC (NAM, ATAF1-2, and CUC2) proteins constitute one of the largest families of plant-specific transcription factors and have been shown to be involved in diverse plant processes including plant growth, development, and stress-tolerance. In this study, a stress-responsive NAC gene, EcNAC1, was isolated from the subtracted stress cDNA library generated from a drought adapted crop, finger millet,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015